Curved Mirrors and Ray Diagrams SNC2D

A concave mirror is a curved mirror with the reflecting surface on the \qquad of the curve.

The point C is the \qquad and the distance between C and the \qquad A
is the \qquad
\qquad .

Halfway between C and A is F, the \qquad or \qquad .

The \qquad $f=$ \qquad .

The focal point is the point at which rays incident \qquad to the principal axis will meet after reflection.

Sketch:
(Recall the Law of Reflection. In this case, the normal to the mirror is the \qquad .)

2 Rules of Reflection

To locate an image, we will use the 2 rules:

- A ray travelling \qquad to the principal axis will reflect through the
\qquad .
- A ray travelling \qquad will reflect \qquad to the principal axis.

Step 1: From the \qquad of the object, draw \qquad rays towards the mirror, One \qquad to the axis and one \qquad .

Step 2: Reflect these rays according to \qquad .

Step 3: Mark the image of the top of the object at the \qquad of the reflected rays.

Step 4: The bottom of the image forms \qquad . Draw your complete image.

The characteristics of the image formed by the mirror will change with the \qquad of the object.

Practice Sheet: "Concave Mirrors and Ray Diagrams"

Answers

The image of an object beyond the centre of curvature of the mirror is:

S: \qquad
L: \qquad
A: \qquad
T: \qquad
The image formed by an object at C is
S: \qquad A: \qquad
L: \qquad T: \qquad

The image formed by an object between C and F is
S: \qquad A: \qquad

L: \qquad T: \qquad
There is \qquad image formed by an object at F.

The image formed by an object between F and the mirror is

S: \qquad

L: \qquad
A: \qquad

T: \qquad

A convex mirror is a curved mirror with the reflecting surface on the \qquad of the curve.

The centre of curvature and the focal point will be on the \qquad side of the mirror.

The focal length will be \qquad .

Sketch:

Light rays reflecting from a convex mirror will
\qquad i.e. never intersect.

Any image formed is therefore always \qquad .

Revised Rules of Reflection

- A ray travelling parallel to the principal axis will reflect such that the extension of the reflected ray will pass \qquad .
- A ray travelling towards the mirror such that its extension will pass through the focal point will reflect \qquad .

Ray Diagram:

The image is:

S: \qquad

L: \qquad

A: \qquad
T: \qquad

